In triangle ABC, m A = 25°, m B = 55°, and a = 10.73. Use the law of sines to find b. Round your answer to the nearest tenth.
![In triangle ABC m A 25 m B 55 and a 1073 Use the law of sines to find b Round your answer to the nearest tenth class=](https://us-static.z-dn.net/files/d17/b51157237b15a7e77c7ba8a3882f60e9.png)
Answer:
Option A. [tex]b=20.8\ units[/tex]
Step-by-step explanation:
we know that
Applying the law of sines
[tex]\frac{a}{sin(A)}=\frac{b}{sin(B)}[/tex]
substitute the values and solve for b
[tex]\frac{10.73}{sin(25\°)}=\frac{b}{sin(55\°)}\\ \\ b=10.73*sin(55\°)/sin(25\°)\\ \\b=20.8\ units[/tex]
Answer:
20.8 option A
Step-by-step explanation:
sine law for triangle states that
sin A / a = sin B / b = sin C / c ( equation for sine law )
where m A = 25°
m B = 55°
a = 10.73
b = unknown
from the equation for sine law
sin m A / a = sin m B / b
sin 25° / 10.73 = sin 55° / b
0.4226 / 10.73 = 0.8191 / b
0.0394 = 0.8191 / b equation 2
cross multiply equation 2 becomes
0.0394 b = 0.8191
therefore b = 0.8191 / 0.0394 = 20.789 to the nearest tenth will be 20.8