Respuesta :
ANSWER
[tex]y (6)= \frac{20}{ {e}^{3} } [/tex]
EXPLANATION
The given equation is:
[tex] \frac{dy}{dt} = - 10 {e}^{ - \frac{t}{2} } [/tex]
We integrate with respect to t to get,
[tex]y = 20 {e}^{ - \frac{t}{2} } + k[/tex]
The initial condition is y(0)=20
We apply the initial condition to get,
[tex]20= 20 {e}^{ - \frac{0}{2} } + k[/tex]
[tex]k = 0[/tex]
This implies that;
[tex]y = 20 {e}^{ - \frac{t}{2} } [/tex]
[tex]y (6)= 20 {e}^{ - \frac{6}{2} } [/tex]
[tex]y (6)= 20 {e}^{-3} [/tex]
Or
[tex]y (6)= \frac{20}{ {e}^{3} } [/tex]
The required solution is [tex]y(6) = 20e^{-3}[/tex]
Integration
Given the following differential equation [tex]dy/dt=-10e^{-t/2}[/tex]
To get the value of y, we will integrate the equation to have:
[tex]y=-20e^{-t/2} + k[/tex]
Given that y(0) = 20, hence;
[tex]20=-20e^{-0/2} + k\\ 20 = 20 + k\\ k = 0[/tex]
Hence the solution to the given integral is [tex]y=-20e^{-t/2} [/tex]
Next is to get y(6)
[tex]y(6)=-20e^{-6/2} \\ y(6) =20e^{-3}}[/tex]
Hence the required solution is [tex]y(6) = 20e^{-3}[/tex]
Learn more on differentiation here: https://brainly.com/question/25081524