Answer:
31.25 units from the center on the major axis
Step-by-step explanation:
From the equation of the ellipse we can see that
- [tex]a^2=625\Rightarrow a=25;[/tex]
- [tex]b^2=225\Rightarrow b=15;[/tex]
- the center of the ellipse has coordinates (5,4).
If a=25, b=15, then
[tex]c^2=a^2-b^2,\\ \\c^2=625-225,\\ \\c^2=400,\\ \\c=20.[/tex]
Then
[tex]e=\dfrac{c}{a}=\dfrac{20}{25}=0.8.[/tex]
The directrices have equations
[tex]x-x_0=\pm \dfrac{a}{e},\\ \\x-5=\pm \dfrac{25}{0.8},\\ \\x=5\pm 31.25,\\ \\x=36.25 \text{ or } x=-26.25[/tex]
and are 31.25 units from the center on the major axis.