If 19000 is borrowed for 10 years at 3.25% interest compound annually if the loan is paid I full at the end of the period how much must be paid back

Respuesta :

[tex]\bf ~~~~~~ \textit{Compound Interest Earned Amount}[/tex]

[tex]\bf A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill &\$19000\\ r=rate\to 3.25\%\to \frac{3.25}{100}\dotfill &0.0325\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{annually, thus once} \end{array}\dotfill &1\\ t=years\dotfill &10 \end{cases} \\\\\\ A=19000\left(1+\frac{0.0325}{1}\right)^{1\cdot 10}\implies A=19000(1.0325)^{10}\implies A\approx 26160.99[/tex]

RELAXING NOICE
Relax