Respuesta :
Answer:
b. 2e^(pi/2)
Step-by-step explanation:
We have to evaluate the following expression by using direct substitution:
[tex]\lim_{x \to \frac{\pi}{2} } 2e^{x} sin(x)[/tex]
Substituting the value of x, we get:
[tex]2e^{\frac{\pi}{2} } sin(\frac{\pi}{2} )[/tex]
Since, the value of sin(π/2) = 1, the above expression will be reduced to:
[tex]2e^{\frac{\pi}{2} }[/tex]
Therefore, option b gives the correct answer