Respuesta :

Answer:

Part 1) The measure of angle LIJ is [tex]m<LIJ=118\°[/tex]

Part 2) The measure of angle CQJ is [tex]m<CQJ=99\°[/tex]

Step-by-step explanation:

step 1

Find the measure of angle KIJ

we know that

The inscribed angle measures half that of the arc comprising

so

[tex]m<KIJ=\frac{1}{2}(arc\ KJ)[/tex]

substitute

[tex]m<KIJ=\frac{1}{2}(124\°)=62\°[/tex]

step 2

Find the measure of angle LIJ

we know that

[tex]m<LIJ+m<KIJ=180\°[/tex] -----> by supplementary angles

substitute

[tex]m<LIJ+62\°=180\°[/tex]

[tex]m<LIJ=180\°-62\°=118\°[/tex]

step 3  

Find the measure of angle IKQ

we know that

The inscribed angle measures half that of the arc comprising

so

[tex]m<IKQ=\frac{1}{2}(arc\ IC)[/tex]

[tex]m<IKQ=\frac{1}{2}(38\°)=19\°[/tex]

step 4

Find the measure of angle IQK

Remember that the sum of the internal angles of a triangle must be equal to 180 degrees

In the triangle IQK

[tex]m<IKQ+m<KIJ+m<IQK=180\°[/tex]

substitute the values

[tex]19\°+62\°+m<IQK=180\°[/tex]

[tex]m<IQK=180\°-(19\°+62\°)=99\°[/tex]

step 5

Find the measure of angle CQJ

we know that

m<CQJ=m<IQK -----> by vertical angles

so

[tex]m<CQJ=99\°[/tex]