Given: m arc KJ = 124°, m arc IC =38° Find: m∠CQJ, m∠LIJ.
![Given m arc KJ 124 m arc IC 38 Find mCQJ mLIJ class=](https://us-static.z-dn.net/files/db3/f01bab2b54408349d5e148a3fe89bc94.png)
Answer:
Part 1) The measure of angle LIJ is [tex]m<LIJ=118\°[/tex]
Part 2) The measure of angle CQJ is [tex]m<CQJ=99\°[/tex]
Step-by-step explanation:
step 1
Find the measure of angle KIJ
we know that
The inscribed angle measures half that of the arc comprising
so
[tex]m<KIJ=\frac{1}{2}(arc\ KJ)[/tex]
substitute
[tex]m<KIJ=\frac{1}{2}(124\°)=62\°[/tex]
step 2
Find the measure of angle LIJ
we know that
[tex]m<LIJ+m<KIJ=180\°[/tex] -----> by supplementary angles
substitute
[tex]m<LIJ+62\°=180\°[/tex]
[tex]m<LIJ=180\°-62\°=118\°[/tex]
step 3
Find the measure of angle IKQ
we know that
The inscribed angle measures half that of the arc comprising
so
[tex]m<IKQ=\frac{1}{2}(arc\ IC)[/tex]
[tex]m<IKQ=\frac{1}{2}(38\°)=19\°[/tex]
step 4
Find the measure of angle IQK
Remember that the sum of the internal angles of a triangle must be equal to 180 degrees
In the triangle IQK
[tex]m<IKQ+m<KIJ+m<IQK=180\°[/tex]
substitute the values
[tex]19\°+62\°+m<IQK=180\°[/tex]
[tex]m<IQK=180\°-(19\°+62\°)=99\°[/tex]
step 5
Find the measure of angle CQJ
we know that
m<CQJ=m<IQK -----> by vertical angles
so
[tex]m<CQJ=99\°[/tex]