Given: m arc IV =140°, m arc VK =30°, m∠ISV=135° Find: m∠VPL

Answer:
[tex]m<VPL=80\°[/tex]
Step-by-step explanation:
step 1
Find the measure of arc PK
we know that
The measure of the inner angle is the semi-sum of the arcs comprising it and its opposite.
Let
x------> the measure of arc IV
y ------> the measure of arc PK
[tex]m<ISV=\frac{1}{2}(x+y)[/tex]
substitute the values and solve for y
[tex]135\°=\frac{1}{2}(140\°+y)[/tex]
[tex]270\°=(140\°+y)[/tex]
[tex]y=270\°-140\°=130\°[/tex]
The measure of arc PK is [tex]130\°[/tex]
step 2
Find the measure of angle VPL
we know that
The inscribed angle measures half that of the arc comprising
Let
z------> the measure of arc VK
y ------> the measure of arc PK
[tex]m<VPL=\frac{1}{2}(z+y)[/tex]
substitute the values
[tex]m<VPL=\frac{1}{2}(30\°+130\°)=80\°[/tex]