bm42400
contestada

Use matrices to determine the coordinates of the vertices of the rotated figure. Then graph the pre-image and the image of the same coordinate grid. (Pictureprovided)

Use matrices to determine the coordinates of the vertices of the rotated figure Then graph the preimage and the image of the same coordinate grid Pictureprovide class=
Use matrices to determine the coordinates of the vertices of the rotated figure Then graph the preimage and the image of the same coordinate grid Pictureprovide class=

Respuesta :

Answer:

The coordinates of the vertices of the rotated figure are :

U' (1 , -6), V' (-8 , -4), W' (-5 , 7) ⇒ the right answer is figure (d)

Step-by-step explanation:

* Lets study the matrices of the Rotation by 180°  

- When we rotate a point around the origin by 180° clockwise

 or anti-clockwise, we change the sign of the x-coordinate and

 the y-coordinate of the point

- Then matrix of the rotation 180° is

 [tex]\left[\begin{array}{ccc}-1&0\\0&-1\end{array}\right][/tex]

* Now lets solve the problem

- We will multiply the matrix of the rotation  by each point to

 find the image of each point

- The dimension of the matrix of the rotation  is 2×2 and the

 dimension of the matrix of each point is 2×1,  then the

 dimension of the matrix of each image is 2×1

∵ Point U is (-1 , 6)

∴ [tex]U'=\left[\begin{array}{ccc}-1&0\\0&-1\end{array}\right]\left[\begin{array}{ccc}-1\\6\end{array}\right]=[/tex]

  [tex]\left[\begin{array}{ccc}(-1)(-1)+(0)(6)\\(0)(-1)+(-1)(6)\end{array}\right]=\left[\begin{array}{ccc}1\\-6\end{array}\right][/tex]

∴ U' = (1 , -6)

∵ Point V is (8 , 4)

∴ [tex]V'=\left[\begin{array}{ccc}-1&0\\0&-1\end{array}\right]\left[\begin{array}{ccc}8\\4\end{array}\right]=[/tex]

  [tex]\left[\begin{array}{ccc}(-1)(8)+(0)(4)\\(0)(8)+(-1)(4)\end{array}\right]=\left[\begin{array}{ccc}-8\\-4\end{array}\right][/tex]

∴ V' = (-8 , -4)

∵ Point W is (5 , -7)

∴ [tex]W'=\left[\begin{array}{ccc}-1&0\\0&-1\end{array}\right]\left[\begin{array}{ccc}5\\-7\end{array}\right]=[/tex]

  [tex]\left[\begin{array}{ccc}(-1)(5)+(0)(-7)\\(0)(5)+(-1)(-7)\end{array}\right]=\left[\begin{array}{ccc}-5\\7\end{array}\right][/tex]

∴ W' = (-5 , 7)

* Now look to the figures to find the right answer

∵ The images of the points are U' (1 , -6), V' (-8 , -4), W' (-5 , 7)

∴ The right answer is figure (d)

Answer:

d on edge 2021

Step-by-step explanation:

took the test :)

ACCESS MORE