bm42400
contestada

Use matrices to determine the coordinates of the vertices of the reflected figure. Then graph the pre-image and the image on the same coordinate grid.

Use matrices to determine the coordinates of the vertices of the reflected figure Then graph the preimage and the image on the same coordinate grid class=
Use matrices to determine the coordinates of the vertices of the reflected figure Then graph the preimage and the image on the same coordinate grid class=

Respuesta :

Answer:

The coordinates of the vertices of the reflected figure are :

R' is (-3 , -7), S' is (5 , -3), T' is (6 , 5) ⇒the right answer is figure (a)

Step-by-step explanation:

* Lets study the matrices of the reflection

- The matrix of the reflection across the x-axis is

 [tex]\left[\begin{array}{cc}1&0\\0&-1\end{array}\right][/tex]

- Because when we reflect any point across the x-axis we

 change the sign of the y-coordinate

- The matrix of the reflection across the y-axis is

 [tex]\left[\begin{array}{cc}-1&0\\0&1\end{array}\right][/tex]

- Because when we reflect any point across the y-axis we

 change the sign of the x-coordinate

* Now lets solve the problem

- We will multiply the matrix of the reflection across the x-axis

 by each point to find the image of each point

- The dimension of the matrix of the reflection across the x-axis

 is 2×2 and the dimension of the matrix of each point is 2×1,

then the dimension of the matrix of each image is 2×1

∵ Point R is (-3 , 7)

∴ [tex]R'=\left[\begin{array}{cc}1&0\\0&-1\end{array}\right]\left[\begin{array}{c}-3\\7\end{array}\right]=[/tex]

  [tex]\left[\begin{array}{c}(1)(-3)+(0)(7)\\(0)(-3)+(-1)(7)\end{array}\right]=\left[\begin{array}{c}-3\\-7\end{array}\right][/tex]

∴ R' is (-3 , -7)

∵ Point S is (5 , 3)

∴ [tex]S'=\left[\begin{array}{cc}1&0\\0&-1\end{array}\right]\left[\begin{array}{c}5\\3\end{array}\right]=[/tex]

   [tex]\left[\begin{array}{c}(1)(5)+(0)(3)\\(0)(5)+(-1)(3)\end{array}\right]=\left[\begin{array}{c}5\\-3\end{array}\right][/tex]

∴ S' is (5 , -3)

∵ Point T is (6 , -5)

∴ [tex]T'=\left[\begin{array}{cc}1&0\\0&-1\end{array}\right]\left[\begin{array}{c}6\\-5\end{array}\right]=[/tex]

   [tex]\left[\begin{array}{c}(1)(6)+(0)(-5)\\(0)(6)+(-1)(-5)\end{array}\right]=\left[\begin{array}{c\pi }6\\5\end{array}\right][/tex]

∴ T' is (6 , 5)

* Look to the answer and find the correct figure

- In figure (d) R' is (-3 , -7), S' is (5 , -3), T' is (6 , 5)

∴ The right answer is figure (a)

Answer: graph C

Step-by-step explanation:

Cumulative exam practice 2021

ACCESS MORE