Respuesta :
Answer:
see explanation
Step-by-step explanation:
[tex]\frac{7\pi }{4}[/tex] is in the fourth quadrant
Where sin and tan are < 0 , cos > 0
The related acute angle is 2π - [tex]\frac{7\pi }{4}[/tex] = [tex]\frac{\pi }{4}[/tex]
Hence
sin([[tex]\frac{7\pi }{4}[/tex] ) = - sin([tex]\frac{\pi }{4}[/tex]) = - [tex]\frac{1}{\sqrt{2} }[/tex] = - [tex]\frac{\sqrt{2} }{2}[/tex]
cos([tex]\frac{7\pi }{4}[/tex]) = cos([tex]\frac{\pi }{4}[/tex]) = [tex]\frac{\sqrt{2} }{2}[/tex]
tan([tex]\frac{7\pi }{4}[/tex]= - tan([tex]\frac{\pi }{4}[/tex] = - 1
Answer:
[tex]\sin\theta=-\frac{1}{\sqrt{2}}[/tex]
[tex]\cos\theta=\frac{1}{\sqrt{2}}[/tex]
[tex]\tan\theta=-1[/tex].
Step-by-step explanation:
We have to find the value of sine cosine and tangent of [tex]\theta=\frac{7\pi}{4}[/tex] radians.
[tex]\frac{7\pi}{4}\times \frac{180}{\pi}=315^{\circ}[/tex]
So, [tex]\theta=\frac{7\pi}{4}[/tex] lies in 4th quadrant. Sine and tangent are negative in 4th quadrant.
The value of sinθ is
[tex]\sin\theta=\sin (\frac{7\pi}{4})[/tex]
[tex]\sin\theta=\sin (2\pi-\frac{\pi}{4})[/tex]
[tex]\sin\theta=-\sin (\frac{\pi}{4})[/tex]
[tex]\sin\theta=-\frac{1}{\sqrt{2}}[/tex]
The value of cosθ is
[tex]\cos\theta=\cos (\frac{7\pi}{4})[/tex]
[tex]\cos\theta=\cos (2\pi-\frac{\pi}{4})[/tex]
[tex]\cos\theta=\cos (\frac{\pi}{4})[/tex]
[tex]\cos\theta=\frac{1}{\sqrt{2}}[/tex]
The value of tanθ is
[tex]\tan\theta=\tan (\frac{7\pi}{4})[/tex]
[tex]\tan\theta=\tan (2\pi-\frac{\pi}{4})[/tex]
[tex]\tan\theta=-\tan (\frac{\pi}{4})[/tex]
[tex]\tan\theta=-1[/tex]
Therefore [tex]\sin\theta=-\frac{1}{\sqrt{2}}[/tex], [tex]\cos\theta=\frac{1}{\sqrt{2}}[/tex] and [tex]\tan\theta=-1[/tex].