Respuesta :

Answer:

see explanation

Step-by-step explanation:

[tex]\frac{7\pi }{4}[/tex] is in the fourth quadrant

Where sin and tan are < 0 , cos > 0

The related acute angle is 2π - [tex]\frac{7\pi }{4}[/tex] = [tex]\frac{\pi }{4}[/tex]

Hence

sin([[tex]\frac{7\pi }{4}[/tex] ) = - sin([tex]\frac{\pi }{4}[/tex]) = - [tex]\frac{1}{\sqrt{2} }[/tex] = - [tex]\frac{\sqrt{2} }{2}[/tex]

cos([tex]\frac{7\pi }{4}[/tex]) = cos([tex]\frac{\pi }{4}[/tex]) =  [tex]\frac{\sqrt{2} }{2}[/tex]

tan([tex]\frac{7\pi }{4}[/tex]= - tan([tex]\frac{\pi }{4}[/tex] = - 1

Answer:

[tex]\sin\theta=-\frac{1}{\sqrt{2}}[/tex]

[tex]\cos\theta=\frac{1}{\sqrt{2}}[/tex]

[tex]\tan\theta=-1[/tex].

Step-by-step explanation:

We have to find the value of sine cosine and tangent of [tex]\theta=\frac{7\pi}{4}[/tex] radians.

[tex]\frac{7\pi}{4}\times \frac{180}{\pi}=315^{\circ}[/tex]

So, [tex]\theta=\frac{7\pi}{4}[/tex] lies in 4th quadrant. Sine and tangent are negative in 4th quadrant.

The value of sinθ is

[tex]\sin\theta=\sin (\frac{7\pi}{4})[/tex]

[tex]\sin\theta=\sin (2\pi-\frac{\pi}{4})[/tex]

[tex]\sin\theta=-\sin (\frac{\pi}{4})[/tex]

[tex]\sin\theta=-\frac{1}{\sqrt{2}}[/tex]

The value of cosθ is

[tex]\cos\theta=\cos (\frac{7\pi}{4})[/tex]

[tex]\cos\theta=\cos (2\pi-\frac{\pi}{4})[/tex]

[tex]\cos\theta=\cos (\frac{\pi}{4})[/tex]

[tex]\cos\theta=\frac{1}{\sqrt{2}}[/tex]

The value of tanθ is

[tex]\tan\theta=\tan (\frac{7\pi}{4})[/tex]

[tex]\tan\theta=\tan (2\pi-\frac{\pi}{4})[/tex]

[tex]\tan\theta=-\tan (\frac{\pi}{4})[/tex]

[tex]\tan\theta=-1[/tex]

Therefore [tex]\sin\theta=-\frac{1}{\sqrt{2}}[/tex], [tex]\cos\theta=\frac{1}{\sqrt{2}}[/tex] and [tex]\tan\theta=-1[/tex].

ACCESS MORE