Respuesta :
Without Green's theorem:
Parameterize each leg of this triangle by
[tex]\vec r_1(t)=(1-t)(0,0)+t(3,1)=(3t,t)[/tex]
[tex]\vec r_2(t)=(1-t)(3,1)+t(0,1)=(3-3t,1)[/tex]
[tex]\vec r_3(t)=(1-t)(0,1)+t(0,0)=(0,1-t)[/tex]
each with [tex]0\le t\le1[/tex].
Then the line integral
[tex]\displaystyle\int_C(8y\sin8x\,\mathrm dx+3xy\,\mathrm dy)[/tex]
computed over each leg is
[tex]\displaystyle\int_0^1(24t\sin24t+9t^2)\,\mathrm dt=3-\cos24+\frac{\sin24}{24}[/tex]
[tex]\displaystyle\int_0^1-24\sin(24-24t)\,\mathrm dt=-2\sin^212[/tex]
[tex]\displaystyle\int_0^10\,\mathrm dt=0[/tex]
so that the total value of the line integral is
[tex]\displaystyle\int_C(8y\sin8x\,\mathrm dx+3xy\,\mathrm dy)=3-\cos24-2\sin^212+\frac{\sin24}{24}\approx1.96[/tex]
With Green's theorem:
We have
[tex]\displaystyle\int_C(8y\sin8x\,\mathrm dx+3xy\,\mathrm dy)=\iint_D\left(\frac{\partial(3xy)}{\partial x}-\frac{\partial(8y\sin8x)}{\partial y}\right)\,\mathrm dA[/tex]
[tex]\displaystyle=\iint_D(3y-8\sin8x)\,\mathrm dA[/tex]
where [tex]D[/tex] denotes the interior of [tex]C[/tex]. This is equivalent to
[tex]\displaystyle\int_0^1\int_0^{3y}(3y-8\sin8x)\,\mathrm dx\,\mathrm dy=2+\frac{\sin24}{24}\approx1.96[/tex]