The graph of the function f(x) = –(x + 3)(x – 1) is shown below. Which statement about the function is true? The function is positive for all real values of x where x < –1. The function is negative for all real values of x where x < –3 and where x > 1. The function is positive for all real values of x where x > 0. The function is negative for all real values of x where x < –3 or x > –1.

Respuesta :

Answer:

The function is negative for all real values of x where x < –3 and where x > 1

Step-by-step explanation:

we have

[tex]f(x)=-(x+3)(x-1)[/tex]

using a graphing tool

see the attached figure

Verify each statement

Case 1) The function is positive for all real values of x where x < –1.

The statement is false (see the attached figure)

Case 2) The function is negative for all real values of x where x < –3 and where x > 1

The statement is true (see the attached figure)

Case 3) The function is positive for all real values of x where x > 0

The statement is false (see the attached figure)

Case 4) The function is negative for all real values of x where x < –3 or x > –1.

The statement is false (see the attached figure)

Ver imagen calculista

Answer:

B. The function is negative for all real values of x where x < –3 and where x > 1.

Step-by-step explanation:

EDG

ACCESS MORE