Respuesta :

Answer:

C

Step-by-step explanation:

The focus and directrix are equidistant from any point (x, y) on the parabola.

Using the distance formula

[tex]\sqrt{(x-0)^2+(y+4)^2}[/tex] = | y - 4 |

[tex]\sqrt{x^2+(y+4)^2}[/tex] = | y - 4 |

Square both sides

x² + (y + 4)² = (y - 4)² ← expand parenthesis on both sides

x² + y² + 8y + 16 = y² - 8y + 16

Subtract y² - 8y + 16 from both sides

x² + 16y = 0 ( subtract x² from both sides )

16y = - x² ( divide both sides by 16 )

y = - [tex]\frac{1}{16}[/tex] x², or

f(x) = - [tex]\frac{1}{16}[/tex]x² → C

There are several parameters that can be used to determine the equation of a parabola

The equation of the parabola i [tex]\mathbf{y =-\frac{x^2}{16}}[/tex]

The given parameters are given as:

[tex]\mathbf{(a,b) = (0,-4)}[/tex] ---- focus

[tex]\mathbf{y =4}[/tex] --- directrix

The equation of the parabola is calculated using:

[tex]\mathbf{\sqrt{(x - a)^2 + (y - b)^2} = |y - directrix|}[/tex]

So, we have:

[tex]\mathbf{\sqrt{(x - 0)^2 + (y + 4)^2} = |y - 4|}[/tex]

[tex]\mathbf{\sqrt{x^2 + (y + 4)^2} = |y - 4|}[/tex]

Square both sides

[tex]\mathbf{x^2 + (y + 4)^2 = (y - 4)^2}[/tex]

Evaluate all exponents

[tex]\mathbf{x^2 + y^2 + 8y + 16 = y^2 - 8y + 16}[/tex]

Cancel out common terms

[tex]\mathbf{x^2 + 8y =- 8y}[/tex]

Collect like terms

[tex]\mathbf{x^2 + 8y+8y =0}[/tex]

[tex]\mathbf{x^2 + 16y =0}[/tex]

Make y the subject

[tex]\mathbf{16y =-x^2}[/tex]

Divide both sides by 16

[tex]\mathbf{y =-\frac{x^2}{16}}[/tex]

Hence, the equation of the parabola i [tex]\mathbf{y =-\frac{x^2}{16}}[/tex]

Read more about parabolas at:

https://brainly.com/question/4074088

ACCESS MORE