Derive the equation of the parabola with a focus at (0, -4) and a directrix of y=4
![Derive the equation of the parabola with a focus at 0 4 and a directrix of y4 class=](https://us-static.z-dn.net/files/d4e/8bd438f83fb9ce03c0a1d54eae97d636.png)
Answer:
C
Step-by-step explanation:
The focus and directrix are equidistant from any point (x, y) on the parabola.
Using the distance formula
[tex]\sqrt{(x-0)^2+(y+4)^2}[/tex] = | y - 4 |
[tex]\sqrt{x^2+(y+4)^2}[/tex] = | y - 4 |
Square both sides
x² + (y + 4)² = (y - 4)² ← expand parenthesis on both sides
x² + y² + 8y + 16 = y² - 8y + 16
Subtract y² - 8y + 16 from both sides
x² + 16y = 0 ( subtract x² from both sides )
16y = - x² ( divide both sides by 16 )
y = - [tex]\frac{1}{16}[/tex] x², or
f(x) = - [tex]\frac{1}{16}[/tex]x² → C
There are several parameters that can be used to determine the equation of a parabola
The equation of the parabola i [tex]\mathbf{y =-\frac{x^2}{16}}[/tex]
The given parameters are given as:
[tex]\mathbf{(a,b) = (0,-4)}[/tex] ---- focus
[tex]\mathbf{y =4}[/tex] --- directrix
The equation of the parabola is calculated using:
[tex]\mathbf{\sqrt{(x - a)^2 + (y - b)^2} = |y - directrix|}[/tex]
So, we have:
[tex]\mathbf{\sqrt{(x - 0)^2 + (y + 4)^2} = |y - 4|}[/tex]
[tex]\mathbf{\sqrt{x^2 + (y + 4)^2} = |y - 4|}[/tex]
Square both sides
[tex]\mathbf{x^2 + (y + 4)^2 = (y - 4)^2}[/tex]
Evaluate all exponents
[tex]\mathbf{x^2 + y^2 + 8y + 16 = y^2 - 8y + 16}[/tex]
Cancel out common terms
[tex]\mathbf{x^2 + 8y =- 8y}[/tex]
Collect like terms
[tex]\mathbf{x^2 + 8y+8y =0}[/tex]
[tex]\mathbf{x^2 + 16y =0}[/tex]
Make y the subject
[tex]\mathbf{16y =-x^2}[/tex]
Divide both sides by 16
[tex]\mathbf{y =-\frac{x^2}{16}}[/tex]
Hence, the equation of the parabola i [tex]\mathbf{y =-\frac{x^2}{16}}[/tex]
Read more about parabolas at:
https://brainly.com/question/4074088