Respuesta :
Answer:
C. [tex]y=6x+5[/tex]
Step-by-step explanation:
we know that
If a ordered pair is a solution of the equation, then the ordered pair must satisfy the equation
Verify each case
we have
The ordered pairs (2, 17) and (5, 35)
case A) [tex]y=-6x+5[/tex]
Verify ordered pair (2,17)
Substitute the value of x and the value of y in the equation and then compare the results
[tex]17=-6(2)+5[/tex]
[tex]17=-7[/tex] ----> is not true
therefore
The ordered pairs (2, 17) and (5, 35) are not solutions of [tex]y=-6x+5[/tex]
case B) [tex]y=6x-5[/tex]
Verify ordered pair (2,17)
Substitute the value of x and the value of y in the equation and then compare the results
[tex]17=6(2)-5[/tex]
[tex]17=7[/tex] ----> is not true
therefore
The ordered pairs (2, 17) and (5, 35) are not solutions of [tex]y=6x-5[/tex]
case C) [tex]y=6x+5[/tex]
Verify ordered pair (2,17)
Substitute the value of x and the value of y in the equation and then compare the results
[tex]17=6(2)+5[/tex]
[tex]17=17[/tex] ----> is true
therefore
the ordered pair (2,17) is a solution of the equation
Verify ordered pair (5,35)
Substitute the value of x and the value of y in the equation and then compare the results
[tex]35=6(5)+5[/tex]
[tex]35=35[/tex] ----> is true
so
the ordered pair (5,35) is a solution of the equation
Hence
The ordered pairs (2, 17) and (5, 35) are solutions of [tex]y=6x+5[/tex]
case D) [tex]y=-6x-5[/tex]
Verify ordered pair (2,17)
Substitute the value of x and the value of y in the equation and then compare the results
[tex]17=-6(2)-5[/tex]
[tex]17=-17[/tex] ----> is not true
therefore
The ordered pairs (2, 17) and (5, 35) are not solutions of [tex]y=-6x-5[/tex]