Respuesta :
Answer:
[tex]\boxed{\bold{2a^2+9ab-7b^2}}[/tex]
Step By Step Explanation:
Remove Parenthesis: (a) = a
[tex]\bold{5a^2+4ab-3b^2-\left(-5ab+4b^2+3a^2\right)}[/tex]
Simplify [tex]\bold{-\left(-5ab+4b^2+3a^2\right)}[/tex]
[tex]\bold{5ab-4b^2-3a^2}[/tex]
Rewrite Equation:
[tex]\bold{5a^2+4ab-3b^2+5ab-4b^2-3a^2}[/tex]
Simplify [tex]\bold{5a^2+4ab-3b^2+5ab-4b^2-3a^2}[/tex]
[tex]\bold{2a^2+9ab-7b^2}[/tex]
- Mordancy
Answer: [tex]2a^2+9ab-7b^2[/tex]
Step-by-step explanation:
The differenece is obtained by subtracting the polynomial [tex](5a^2+4ab-3b^2)[/tex] and the polynomial [tex](-5ab+4b^2+3a^2)[/tex].
Remember that:
[tex](-)(-)=+\\(+)(+)=+\\(-)(+)=-[/tex]
Then, you need to Distribute the negative sign:
[tex](5a^2+4ab-3b^2)-(-5ab+4b^2+3a^2)= 5a^2+4ab-3b^2+5ab-4b^2-3a^2[/tex]
Now, you need to add the like terms. Then you get that the difference is:
[tex]=2a^2+9ab-7b^2[/tex]