Determine whether or not F is a conservative vector field. If it is, find a function f such that F = ∇f. (If the vector field is not conservative, enter DNE.) F(x, y) = (yex + sin(y))i + (ex + x cos(y))j

Respuesta :

If

[tex]\nabla f=(ye^x+\sin y)\,\vec\imath+(e^x+x\cos y)\,\vec\jmath[/tex]

then

[tex]\dfrac{\partial f}{\partial x}=ye^x+\sin y\implies f(x,y)=ye^x+x\sin y+g(y)[/tex]

Differentiating with respec to [tex]y[/tex] gives

[tex]\dfrac{\partial f}{\partial y}=e^x+x\cos y=e^x+x\cos y+g'(y)[/tex]

[tex]\implies g'(y)=0\implies g(y)=C[/tex]

So [tex]F[/tex] is indeed conservative, and

[tex]f(x,y)=ye^x+x\sin y+C[/tex]