Parameterize the circular part of [tex]C[/tex] (call it [tex]C_1[/tex]) by
[tex]x=4\cos t[/tex]
[tex]y=4\sin t[/tex]
wih [tex]0\le t\le\pi[/tex], and the linear part (call it [tex]C_2[/tex]) by
[tex]x=-4-t[/tex]
[tex]y=4t[/tex]
with [tex]0\le t\le1[/tex].
Then
[tex]\displaystyle\int_C\sin x\,\mathrm dx+\cos y\,\mathrm dy=\left\{\int_{C_1}+\int_{C_2}\right\}\sin x\,\mathrm dx+\cos y\,\mathrm dy[/tex]
[tex]=\displaystyle\int_0^\pi(-4\sin t\sin(4\cos t)+4\cos t\cos(4\sin t))\,\mathrm dt+\int_0^1(-\sin(-4-t)+\cos4t)\,\mathrm dt[/tex]
[tex]=0+\displaystyle\int_0^1(\sin(t+4)+\cos4t)\,\mathrm dt[/tex]
[tex]=\cos4-\cos5+\dfrac{\sin4}4[/tex]