Respuesta :
Answer:
1) The size of the colony after 4 days is 6553 mosquitoes
2) After [tex]t = 4.9\ days[/tex]
Step-by-step explanation:
To answer this question you must use the growth formula
[tex]N = N_0e ^ {kt}[/tex]
Where
[tex]N_0[/tex] is the initial population of mosquitoes = 1000
t is the time in days
k is the growth rate
N is the population according to the number of days
We know that when t = 1 and [tex]N_0=1000[/tex] then N = 1600
Then we use these values to find k.
[tex]1600 = 1000e ^{k(1)}\\\\\frac{1600}{1000} = e ^ k\\\\ln(\frac{1600}{1000}) = k\\\\k = 0.47[/tex]
Now that we know k we can find the size of the colony after 4 days.
[tex]N = 1000e ^ {0.47(4)}\\\\N = 6553\ mosquitoes[/tex]
To know how long it should take for the population to reach 10,000 mosquitoes we must do N = 10000 and solve for t.
[tex]10000 = 1000e ^ {0.47t}\\\\10 = e ^ {0.47t}\\\\ln(10) = 0.47t\\\\t = \frac{ln(10)}{0.47}\\\\t = 4.9\ days[/tex]
Answer:
The size of the mosquito colony after 4 days is about [tex]6553[/tex] and it will take about [tex]4.9[/tex] days to become [tex]10,000[/tex] mosquitoes.
Explanation:
Step 1 :
Given,
Initially [tex]1000[/tex] mosquitoes
After [tex]1[/tex] day the mosquitoes increases to [tex]1600[/tex].
After[tex]4[/tex] days=?
When it reaches about [tex]10000[/tex] mosquitoes?
Let,
To find the population of mosquitoes after[tex]4[/tex] days,
Using the formula,[tex]$N=N_{0} e^{k t}$[/tex]
Here,
N=Number of population after [tex]1[/tex] day[tex](1600)[/tex]
[tex]N_{0}=[/tex]Initial population[tex](1000)[/tex]
e is constant value
k=rate of growth of mosquitoes
t=growth time of mosquitoes[tex](1)[/tex]
Find [tex]N_{1[/tex],population after [tex]4[/tex] days
First,
Substituitng the values in the formula,
[tex]$1600=1000 e^{k(1)}$[/tex]
k value,
[tex]$\frac{1600}{1000}=e^{k}$[/tex]
Opposite side change of [tex]e[/tex],gives
[tex]$\ln \left(\frac{1600}{1000}\right)=k$[/tex]
Cancelling zeros,
[tex]$\ln \left(\frac{16}{10}\right)=k$[/tex]
Simplifying,
[tex]$\ln (16)-\ln (10)=k$[/tex]
[tex]$k=0.47$[/tex]
Apply the value of k in the formula,
[tex]$N_{1} =1000 e^{0.47(4)}$[/tex]
[tex]$N_{1} =1000 e^{1.88}$[/tex]
[tex]$N_{1} =6553$[/tex]
The size of the colony after [tex]4[/tex] days is [tex]6553[/tex] mosquitoes.
Step 2:
Then,
Time taken to reach about [tex]10000[/tex] mosquitoes is
Here we know that the number of mosquitoes[tex]=10000[/tex]
Time taken[tex]=?[/tex]
Formula:
[tex]$N=N_{0} e^{k t}$[/tex]
[tex]N=10,000[/tex]
[tex]N_{0}=1000[/tex]
[tex]k=0.47[/tex]
By the values,
[tex]$10,000=1000 e^{0.47 t}$[/tex]
[tex]$10,000/1000= e^{0.47 t}$[/tex]
[tex]$10= e^{0.47 t}$[/tex]
[tex]$\ln (10)=0.47 t$[/tex]
[tex]$t=\frac{\ln (10)}{0.47}$[/tex]
[tex]$t=4.9$[/tex]
It takes about [tex]4.9[/tex] days to reach the population of [tex]10,000[/tex] mosquitoes.