Respuesta :

The answer is D because the square root of 3^15 is 2187 square root of 3. Now if you add 3^7 then that gives you 2187. So your answer would be D

Hello!

The answer is:

The correct option is D. [tex]\sqrt{3^{15} }=3^{7}* \sqrt{3}[/tex]

Why?

To solve this problem, we must remember the following properties:

Product of powers with the same base:

[tex]a^{m}a^{n}=a^{m+n}[/tex]

Power of a power:

[tex](a^{m})^{n}=a^{m*n}[/tex]

Also, we must remember that if we want to introduce a number into a root, in order to not change the expression, we need to introduce it with the same exponent:

[tex]a*\sqrt{b}=\sqrt{a^{2}*b }[/tex]

So, solving the problem, we have:

[tex]\sqrt{3^{15} }=3^{7}*\sqrt{3}\\\\3^{7}*\sqrt{3}=\sqrt{(3^{7})^{2} *3}\\\\\sqrt{(3^{7})^{2} *3}=\sqrt{(3^{14} *3}\\\\\sqrt{3^{14} *3}=\sqrt{3^{14+1}[/tex]

[tex]\sqrt{3^{14+1} } =\sqrt{3^{15}}[/tex]

Hence,

[tex]\sqrt{3^{15} }=3^{7}* \sqrt{3}[/tex]

So, the correct option is D. [tex]\sqrt{3^{15} }=3^{7}* \sqrt{3}[/tex]

Have a nice day!

ACCESS MORE