Please help me on this
![Please help me on this class=](https://us-static.z-dn.net/files/d40/68649b0905bc806096309d8455234e59.png)
The answer is:
The correct option is D. [tex]\sqrt{3^{15} }=3^{7}* \sqrt{3}[/tex]
To solve this problem, we must remember the following properties:
Product of powers with the same base:
[tex]a^{m}a^{n}=a^{m+n}[/tex]
Power of a power:
[tex](a^{m})^{n}=a^{m*n}[/tex]
Also, we must remember that if we want to introduce a number into a root, in order to not change the expression, we need to introduce it with the same exponent:
[tex]a*\sqrt{b}=\sqrt{a^{2}*b }[/tex]
So, solving the problem, we have:
[tex]\sqrt{3^{15} }=3^{7}*\sqrt{3}\\\\3^{7}*\sqrt{3}=\sqrt{(3^{7})^{2} *3}\\\\\sqrt{(3^{7})^{2} *3}=\sqrt{(3^{14} *3}\\\\\sqrt{3^{14} *3}=\sqrt{3^{14+1}[/tex]
[tex]\sqrt{3^{14+1} } =\sqrt{3^{15}}[/tex]
Hence,
[tex]\sqrt{3^{15} }=3^{7}* \sqrt{3}[/tex]
So, the correct option is D. [tex]\sqrt{3^{15} }=3^{7}* \sqrt{3}[/tex]
Have a nice day!