The function is given [tex]f(x)=2^x+3[/tex].
Now let's solve for [tex]f(-2)[/tex].
[tex]f(-2)=2^{-2}+3[/tex]
Rule of negative exponent: [tex]x^{-1}=\frac{1}{x^1}[/tex].
[tex]f(-2)=\frac{1}{2^2}+3[/tex]
[tex]f(-2)=\frac{1}{4}+\frac{3}{1}[/tex]
Rule for sum of fractions: [tex]\frac{a}{b}+\frac{c}{d}=\frac{ad+bc}{bd}[/tex].
[tex]f(-2)=\frac{13}{4}[/tex]
And the result is:
[tex]f(-2)=\boxed{\frac{13}{4}=3.25}[/tex]