ANSWER
The points are:
(32,-85)
and
[tex]( \frac{500}{27} , \frac{577}{9} )[/tex]
EXPLANATION
The given parametric equation that defines the curve is:
[tex]x = 4 {t}^{3} [/tex]
[tex]y = 3 + 40t - 2 {t}^{2} [/tex]
We differentiate to get,
[tex] \frac{dx}{dt} = 12 {t}^{2} [/tex]
[tex] \frac{dy}{dt} = 40 - 4t[/tex]
The slope of the tangent is given by;
[tex] \frac{dy}{dx} = \frac{ \frac{dy}{dt} }{ \frac{dx}{dt} } [/tex]
[tex]\frac{dy}{dx} = \frac{12 {t}^{2} }{40 - 4t} [/tex]
For the slope to be 1, then we must solve the following equation for t.
[tex]\frac{12 {t}^{2} }{40 - 4t} = 1[/tex]
[tex]12 {t}^{2} = 40 - 4t[/tex]
[tex]12 {t}^{2} + 4t - 4 0 = 0[/tex]
[tex]3{t}^{2} + t - 10 = 0[/tex]
[tex](t + 2)(3t - 5) = 0[/tex]
[tex]t = - 2 \: \: or \: \: t = \frac{5}{3} [/tex]
When t=-2, we put -2 into the expression for x and y to get
x=4(-2)³ and y=3+40(-2)-2(-2)²
This implies that,
x=32, y=-85
Hence one point is (32,-85)
Similarly, when
[tex]t = \frac{5}{3} [/tex]
[tex]x = \frac{500}{27} ,y = \frac{577}{9} [/tex]
Another point is
[tex]( \frac{500}{27} , \frac{577}{9} )[/tex]