ANSWER
C) 1, 3, 6, 10, 15, 21, 28, 36, 45
EXPLANATION
The recursive formula is,
[tex]t_1=1,t_n=t_{n-1}+n[/tex]
when n is a natural number greater than 1.
When n=2,
[tex]t_2=t_{2-1}+2[/tex]
[tex]t_2=t_{1}+2 = 1 + 2 = 3[/tex]
when n=3,
[tex]t_3=t_{2}+2 = 3 + 3= 6[/tex]
when t=4,
[tex]t_4=t_{3}+2 = 6+ 4= 10[/tex]
When t=5,
[tex]t_5=t_{4}+5 = 10 + 5 = 15[/tex]
when t=6,.
[tex]t_6=t_{5}+6 = 15 + 6 = 21[/tex]
when t=7
[tex]t_7=t_{6}+7 = 21 + 7 = 28[/tex]
When t=8,
[tex]t_8=t_{7}+8 = 28 + 8 = 36[/tex]
When t=9,
[tex]t_9=t_{8}+9 = 36 + 9 = 45[/tex]
Hence the first nine triangular number are
C) 1, 3, 6, 10, 15, 21, 28, 36, 45