Write the equation of a circle in standard form with diameter stack A B with bar on top. Where A(7, 5) and B(-1, -1). For full credit, show your work.

Respuesta :

ANSWER

[tex]{(x - 3)}^{2} + {(y - 2)}^{2} = 25[/tex]

EXPLANATION

The given circle has diameter A(7,5) and B(-1,-1).

The center of the circle is the midpoint of the diameter.

The midpoint is given by the formula:

[tex] (\frac{x_1+x_2}{2} , \frac{y_1+y_2}{2} )[/tex]

We substitute the points to get

[tex](\frac{7+ - 1}{2} , \frac{5+ - 1}{2} )[/tex]

[tex](3 , 2 )[/tex]

The radius of the circle is calculated using the center and any point on the circle.

[tex]r = \sqrt{ {(x_2-x_1)}^{2} + {(y_2-y_1)}^{2} } [/tex]

[tex]r = \sqrt{ {(3- - 1)}^{2} + {(2 - - 1)}^{2} } [/tex]

[tex]r = \sqrt{16 + 9 } [/tex]

[tex]r = \sqrt{25} = 5[/tex]

We substitute the center and the radius into the standard equation of the circle.

[tex] {(x - h)}^{2} + {(y - k)}^{2} = {r}^{2} [/tex]

Substitute the values to get,

[tex] {(x - 3)}^{2} + {(y - 2)}^{2} = {5}^{2} [/tex]

[tex]{(x - 3)}^{2} + {(y - 2)}^{2} = 25[/tex]

ACCESS MORE