The surface is closed, so you can use the divergence theorem:
[tex]\vec f=x^3\,\vec\imath+y^3\,\vec\jmath+z^3\,\vec k\implies\nabla\cdot\vec f=3x^2+3y^2+3z^2[/tex]
Then the flux is
[tex]\displaystyle\iint_S\vec f\cdot\mathrm d\vec S=3\iiint_Rx^2+y^2+z^2\,\mathrm dV[/tex]
where [tex]R[/tex] is the region with boundary [tex]S[/tex].
Convert to cylindrical coordinates, taking
[tex]x=u\cos v[/tex]
[tex]y=u\sin v[/tex]
[tex]z=z[/tex]
Then the integral is
[tex]\displaystyle3\int_0^{2\pi}\int_0^1\int_{u^2}^5(u^2+z^2)u\,\mathrm dz\,\mathrm du\,\mathrm dv=\frac{525\pi}4[/tex]