Respuesta :

Answer:

Discriminant = 0

Number of real root = 1

Step-by-step explanation:

f(x) = 3x² + 24x + 48

First, we need to find the discriminant.

Discriminant can be found using the formula b² - 4ac.

Discriminant = (24)² - 4(3)(48) = 0

Since the discriminant is 0, it implies that the function has one and only one real root.

The function has only one distinct real number of zeros.

Discriminate :

The discriminate of quadratic function is given as,

                            [tex]D=b^{2}-4ac[/tex]

Given function are, [tex]f(x)=3x^{2} +24x+48[/tex]

Compare above equation with [tex]ax^{2} +bx+c[/tex]

We get ,   [tex]a=3,b=24,c=48[/tex]

                   [tex]D=b^{2}-4ac\\ \\D=(24)^{2}-(4*3*48)\\ \\D=576-576=0[/tex]

Since, the Discriminate of given function is zero. Therefore, function has only one distinct real number of zeros.

Learn more about the Quadratic equation here:

https://brainly.com/question/1214333