Respuesta :

Answer: Option A

Step-by-step explanation:

The graph of a quadratic function is a parabola.

Find the x-coordinate of the vertex of the parabola with:

[tex]x=\frac{-b}{2a}[/tex]

In this case:

[tex]b=-12\\a=-3[/tex]

Substitute them into the formula. Then:

[tex]x=\frac{-(-12)}{2(-3)}\\\\x=-2[/tex]

Now, substitute the [tex]x=-2[/tex] into the quadratic function to find the y-coordinate of the vertex of the parabola.

Finally:

[tex]y = -3x^2 - 12x - 9\\\\y = -3(-2)^2 - 12(-2) - 9\\y=3[/tex]

The vertex is: (-2,3)

Answer:

A. (-2,3)

Step-by-step explanation:

You can write a general equation from an quadratic equation that follow:

y=ax^2+bx+c

and you can calculate the vertex (x1,y1) like:

x1=-b/2a

y1=(4ac-b^2)/4a

Then, you have y = -3x^2 - 12x - 9

where:

a=-3

b=-12

c=-9

Now you can calculate the vertex (x1,y1):

x1=-b/2a=-(-12)/(2*-3)=12/-6=-2

y1=(4ac-b^2)/4a)((4*-3*-9)-(-12^2))/(4*-3)=(108-144)/-12=3

ACCESS MORE