Triangle A’B’C’ is a dilation of triangle ABC about point P. Triangle ABC is shown. Side AB is labeled 2 and a half. Side BC is labeled one-half. Side CA is labeled 1. Triangle ABC is is between point P and Triangle A prime B prime C prime. Side A prime B prime is labeled 7 and a half. Side B prime C prime is labeled one and a half. Side C prime A prime is labeled 3. A, enlargement B, reduction

Respuesta :

Answer:

  A.  enlargement

Step-by-step explanation:

A'B' has a length that is 3 times that of AB, so the dilation is an enlargement.

_____

The given triangles cannot exist. The short sides are too short to connect the ends of the long side.

Pre-Image =ΔABC

And , Image=ΔA'B'C'

Description of triangle ABC and ΔA'B'C' and Relation between them

[tex]\rightarrow \overline{AB}=2\frac{1}{2}=2.5\\\\\rightarrow \overline{BC}=\frac{1}{2}=0.5\\\\\rightarrow \overline{AC}=1\\\\\rightarrow \overline{A'B'}=7\frac{1}{2}=7.5\\\\ \rightarrow \overline{B'C'}=1\frac{1}{2}=1.5\\\\\rightarrow \overline{A'C'}=3\\\\ \rightarrow \frac{ \overline{AB}}{ \overline{A'B'}}=\frac{2.5}{7.5}\\\\ \rightarrow \overline{A'B'}=3 \times\overline{AB}\\\\ \rightarrow \frac{ \overline{CB}}{ \overline{C'B'}}=\frac{0.5}{1.5}\\\\ \rightarrow \overline{C'B'}=3 \times\overline{CB}[/tex]

[tex]\rightarrow \frac{ \overline{CA}}{ \overline{C'A'}}=\frac{1}{3}\\\\ \rightarrow \overline{C'A'}=3 \times\overline{CA}[/tex]

⇒As, each Corresponding side of Image(ΔA'B'C') is three times the Corresponding Side of Preimage(ΔABC).

⇒So, ΔA'B'C' is Enlargement of ΔABC.

Otras preguntas