Create a matrix for this system of linear equations, The determinant of the coefficient matrix is
![Create a matrix for this system of linear equations The determinant of the coefficient matrix is class=](https://us-static.z-dn.net/files/d4d/59544bba813bbd31f1f986d934772b1e.jpeg)
Answer: The determinant of the coefficient matrix is -15 and x = 3, y = 4, z = 1.
Step-by-step explanation: The given system of linear equations is :
[tex]2x+y+3z=13~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)\\\\x+2y=11~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(ii)\\\\3x+z=10~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(iii)[/tex]
We are given to find the determinant of the coefficient matrix and to find the values of x, y and z.
The determinant of the co-efficient matrix is given by
[tex]D=\begin{vmatrix}2 & 1 & 3\\ 1 & 2 & 0\\ 3 & 0 & 1\end{vmatrix}=2(2-0)+1(0-1)+3(0-6)=4-1-18=-15.[/tex]
Now, from equations (ii) and (iii), we have
[tex]x+2y=11~~~~~\Rightarrow y=\dfrac{11-x}{2}~~~~~~~~~~~~~~~~~~~~~~~~~~(iv)\\\\\\3x+z=10~~~~~~\Rightarrow z=10-3x~~~~~~~~~~~~~~~~~~~~~~~~~(v)[/tex]
Substituting the value of y and z from equations (iv) and (v) in equation (i), we get
[tex]2x+y+3z=13\\\\\Rightarrow 2x+\dfrac{11-x}{2}+3(10-3x)=13\\\\\Rightarrow 4x+11-x+60-18x=26\\\\\Rightarrow -15x+71=26\\\\\Rightarrow -15x=26-71\\\\\Rightarrow -15x=-45\\\\\Rightarrow x=3.[/tex]
From equations (iv) and (v), we get
[tex]y=\dfrac{11-3}{2}=4,\\\\z=10-3\times3=1.[/tex]
Thus, the determinant of the coefficient matrix is -15 and x = 3, y = 4, z = 1.
Answer:
The determinant of the coefficient matrix is 15.
x = 3
y = 4
z = 1.
Step-by-step explanation:
Just took the test.