Solve for x, y, and z
(system of equations with 3 equations)

2x−3y+4z=8, 3x+4y−5z=−4, 4x−5y+6z=12

Answer:
x = __, y = __, z = __

Respuesta :

Answer:

The solution is x=1,y=2,z=3

Step-by-step explanation:

The given system of equations is ;\

2x−3y+4z=8...(1)

3x+4y−5z=−4...(2)

4x−5y+6z=12...(3)

Make x the subject in equation (1)

[tex]x=\frac{8+3y-4z}{2}...(4)[/tex]

Put equation (4) into equation (2) and (3)

[tex]3(\frac{8+3y-4z}{2})+4y-5z=-4[/tex]

Multiply through by;

[tex]3(8+3y-4z)+8y-10z=-8[/tex]

Expand;

[tex]24+9y-12z+8y-10z=-8[/tex]

Simplify;

[tex]17y-22z=-32...(5)[/tex]

Equation (4) in (3)

[tex]4(\frac{8+3y-4z}{2})-5y+6z=12[/tex]

[tex]2(8+3y-4z)-5y+6z=12[/tex]

[tex]16+6y-8z-5y+6z=12[/tex]

[tex]y-2z=-4[/tex]

[tex]y=2z-4...(6)[/tex]

Put equation (6) into equation (5)

[tex]17(2z-4)-22z=-32[/tex]

[tex]34z-68-22z=-32[/tex]

[tex]34z-22z=-32+68[/tex]

[tex]12z=36[/tex]

z=3

Put z=3 into equation (6)

y=2(3)-4=2

Put y=2 and z=3 into equation 4

[tex]x=\frac{8+3(2)-4(3)}{2}=1[/tex]

The solution is x=1,y=2,z=3

ACCESS MORE