Using enthalpies of formation, calculate H.
![Using enthalpies of formation calculate H class=](https://us-static.z-dn.net/files/dcb/b12c1d01feeffb3617d4fdd41ceb8c05.png)
ΔH° = -851.5 kJ/mol given that
[tex]\begin{array}{cc}\textbf{Species}&{\bf {\Delta H_f\textdegree{}}}\\ \text{Fe}_2\text{O}_3\;(s) & -824.2\;\text{kJ}\cdot\text{mol}^{-1}\\\text{Al}_2\text{O}_3\;(s) & -1675.7\;\text{kJ}\cdot\text{mol}^{-1}\end{array}[/tex]
(Source: Chemistry Libretexts.)
Refer to a thermodynamic data table for the standard enthalpy of formation for each species.
Don't be alerted if the data for Al (s) and Fe (s) are missing. Why?
As a result, [tex]\Delta H_f\textdegree{} = 0[/tex] for both Al (s) and Fe (s).
[tex]\displaystyle \Delta H_{\text{rxn}}\textdegree{} = \text{Sum of }\Delta H\text{ for all }\textbf{Product} - \text{Sum of }\Delta H\text{ for all }\textbf{Reactant}}\\\phantom{\Delta H_{\text{rxn}}\textdegree{}} = (1\times \Delta H_f\textdegree{}(\text{Al}_2\text{O}_3\;(s)) + 1\times \Delta H_f\textdegree{}(\text{Al}\;(s)) \\ \phantom{\Delta H_{\text{rxn}}\textdegree{}=}-(1\times \Delta H_f\textdegree{}(\text{Fe}_2\text{O}_3\;(s)) + 1\times\Delta H_f\textdegree{}(\text{Fe}\;(s))[/tex]
[tex]\Delta H_{\text{rxn}}\textdegree{}} = (1 \times (-1675.7)) - (1\times(-824.2)) = -851.5\;\text{kJ}\cdot\text{mol}^{-1}[/tex].
The number "1" here emphasizes that in case there are more than one mole of any species in one mole of the reaction, it will be necessary to multiply the [tex]\Delta H_f\textdegree{}[/tex] of that species with its coefficient in the equation.