At what x-values do the graphs of the functions y=cos 2x and y = cos^2 x-1 intersect over the interval 0 ≤ x ≤ pi. There must be two selections there are two anwsers!
![At what xvalues do the graphs of the functions ycos 2x and y cos2 x1 intersect over the interval 0 x pi There must be two selections there are two anwsers class=](https://us-static.z-dn.net/files/d42/4cc4f70605f8220d2de886d27c2a9cfa.png)
Answer:
[tex]x=\frac{\pi}{2}[/tex] and [tex]x=\frac{3\pi}{2}[/tex]
Step-by-step explanation:
We need to solve the 2 equations to figure out the x-values (intersecting points).
Note: The identity [tex]cos^{2}x=\frac{1}{2}+\frac{1}{2}cos(2x)[/tex]
[tex]cos(2x)=cos^{2}(x)-1\\cos(2x)=(\frac{1}{2}+\frac{1}{2}cos(2x))-1\\cos(2x)=\frac{1}{2}cos(2x)-\frac{1}{2}\\\frac{1}{2}cos(2x)=-\frac{1}{2}\\cos(2x)=-1\\2x=cos^{-1}(-1)\\2x=\pi, 3\pi\\x=\frac{\pi}{2}, \frac{3\pi}{2}[/tex]
So they intersect at [tex]x=\frac{\pi}{2}, \frac{3\pi}{2}[/tex]