Respuesta :
Convert everything to terms of sine and cosine:
[tex]\dfrac{\sec\theta}{\tan\theta}=\dfrac{\frac1{\cos\theta}}{\frac{\sin\theta}{\cos\theta}}[/tex]
The factors of [tex]\dfrac1{\cos\theta}[/tex] cancel to give
[tex]\dfrac1{\sin\theta}=\csc\theta[/tex]
The trigonometric identity is [tex]\rm \dfrac{Sec\theta}{Tan\theta}=Cosec\theta\\\\[/tex].
We have to prove the following trigonometric identities:
Trigonometric ratios;
These ratios in trigonometry relate the ratio of sides of a right triangle to the respective angle.
Given
Prove the statement;
[tex]\rm \dfrac{Sec\theta}{Tan\theta}=Cosec\theta\\\\[/tex]
Here, sec theta and tan theta can be written as;
[tex]\rm Sec\theta=\dfrac{1}{Cos\theta}\\\\Tan\theta=\dfrac{Sin\theta}{Cos\theta}\\\\[/tex]
Substitute the values in the equation
[tex]\rm = \rm \dfrac{Sec\theta}{Tan\theta}\\\\=\dfrac{\dfrac{1}{cos\theta}}{\dfrac{sin\theta}{cos\theta}}\\\\=\dfrac{1}{cos\theta}\times {\dfrac{sin\theta}{cos\theta}\\\\={\dfrac{1}{sin\theta}\\\\=cosec\theta\\\\[/tex]
Therefore, The trigonometric identity is [tex]\rm \dfrac{Sec\theta}{Tan\theta}=Cosec\theta\\\\[/tex].
Hence proved.
To know more about trigonometric identity click the link given below.
https://brainly.com/question/22698523