Respuesta :

Answer: x= 5-√10 / 3

x= 5 + √10/ 3

Step-by-step explanation:

-(-10) +- √(-10)^2 -4 x 3 x 5 / 2x 3

x= 10 +- √100-60 / 6

x=10 +- √ 40

simplify to x = 10 +- 2√10 / 6

simplify both equations now

divide both equations by 2 which gives the answer.

Answer:

[tex]x=\frac{5+ \sqrt{10}}{3}\,,\,\frac{5- \sqrt{10}}{3}[/tex]

Step-by-step explanation:

Let [tex]ax^2+bx+c=0[/tex] be a quadratic equation where a , b , c are coefficients and a ≠ 0.

Using quadratic formula, roots are given by [tex]x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

On comparing equation [tex]3x^2-10x+5=0[/tex] with equation [tex]ax^2+bx+c=0[/tex] , we get [tex]a=3\,,\,b=-10\,,\,c=5[/tex]

First , we will find [tex]b^2-4ac[/tex] :

[tex](-10)^2-4(3)(5)=100-60=40[/tex]

So, [tex]\sqrt{b^2-4ac}=\sqrt{40}=2\sqrt{10}[/tex]

Now, using quadratic formula, we will find roots of the equation .

[tex]\begin{align*}\displaystyle x &=\frac{10\pm 2\sqrt{10}}{6}\\\displaystyle &=\frac{5\pm \sqrt{10}}{3}\\\displaystyle &=\frac{5+ \sqrt{10}}{3}\,,\,\frac{5- \sqrt{10}}{3}\\ \end{align*}[/tex]

ACCESS MORE