Respuesta :
Answer:
The measure of angle A is 53.13°.
Step-by-step explanation:
Given,
ABC is a triangle,
In which m∠CBA = 90°, AB = 3 cm, BC = 4 cm and CA = 5 cm,
By the law of sine,
[tex]\frac{sinA}{BC}=\frac{sinB}{AC}[/tex]
[tex]sin A = BC\times \frac{sin B}{AC}[/tex] ( By cross multiplication )
By substituting the values,
[tex]sin A = 4\times \frac{sin 90^{\circ}}{5}[/tex]
[tex]sin A = \frac{4}{5}[/tex] ( sin 90° = 1 )
[tex]m\angle A = sin^{-1}(\frac{4}{5})[/tex]
[tex]\implies m\angle A =53.1301023542^{\circ}\approx 53.13^{\circ}[/tex]
Hence, the measure of angle A is 53.13°.