Answer:
[tex]1.3\ days[/tex]
Step-by-step explanation:
step 1
Find the units rate of the first glacier
[tex]\frac{75}{3}=25\frac{meters}{day}[/tex]
using proportion
[tex]\frac{25}{1}\frac{meters}{day}=\frac{200}{x}\frac{meters}{days}\\ \\x=200/25\\ \\x=8\ days[/tex]
step 2
Find the units rate of the second glacier
[tex]\frac{107.5}{5}=21.5\frac{meters}{day}[/tex]
using proportion
[tex]\frac{21.5}{1}\frac{meters}{day}=\frac{200}{x}\frac{meters}{days}\\ \\x=200/21.5\\ \\x=9.3\ days[/tex]
step 3
Find the difference
[tex]9.3\ days-8\ days=1.3\ days[/tex]