QUESTION 1
Taking the right hand side we have;
[tex]4a^2-b^2[/tex]
We can rewrite this as;
[tex](2a)^2-b^2[/tex]
We apply difference of two squares.
[tex]p^2-q^2=(p+q)(p-q)[/tex]
[tex](2a-b)(2a+b)[/tex]
[tex]\therefore (2a-b)(2a+b)=4a^2-b^2[/tex]
QUESTION 2
Taking the right hand side we have;
[tex]25x^2-0.16y^4[/tex]
We can rewrite this as;
[tex](5x)^2-(0.4y^2)^2[/tex]
We apply difference of two squares.
[tex]p^2-q^2=(p+q)(p-q)[/tex]
[tex](5x-0.4y^2)(5x+0.4y^2)[/tex]
[tex]\therefore (5x-0.4y^2)(5x+0.5y^2)=25x^2-0.16y^4[/tex]
QUESTION 3
Taking the right hand side of the given equation, we have;
[tex]121a^{10}-b^8[/tex]
We rewrite this as;
[tex](11a^{5})^2-(b^4)^2[/tex]
[tex]\therefore (11a^{5})^2-(b^4)^2=(11a^5-b^4)(11a^5+b^4)[/tex]
QUESTION 4
From the RHS;
[tex]16y^2-9x^2[/tex]
This implies that;
[tex](4y)^2-(3x)^2[/tex]
[tex](4y)^2-(3x)^2=(4y-3x)(4y+3x)[/tex]
QUESTION 5
From the left hand side, we have
[tex]100m^4-4n^6[/tex]
This implies that;
[tex](10m^2)^2-(2n^3)^2[/tex]
Using difference of two squares, we have;
[tex](10m^2)^2-(2n^3)^2=(10m^2-2n^3)(2n^3+10m^2)[/tex]
QUESTION 6
From the LHS;
[tex]m^4-225m^{10}[/tex]
We rewrite to obtain;
[tex](m^2)^2-(15c^5)^2[/tex]
Using difference of two squares, we obtain;
[tex](m^2)^2-(15c^5)^2=(m^2-15c^5)(15c^5+m^2)[/tex]