Respuesta :
Answer:
[tex]S_{21}=315[/tex]
Step-by-step explanation:
The given arithmetic series is
-5+(-3)+(-1)+1+...
The first term of this series is
[tex]a_1=-5[/tex]
The common difference is
[tex]d=-3--5[/tex]
[tex]d=-3+5[/tex]
[tex]d=2[/tex]
The sum of the first n-terms of an arithmetic sequence is
[tex]S_n=\frac{n}{2}(2a+d(n-1))[/tex]
[tex]S_{21}=\frac{21}{2}(2(-5)+2(21-1))[/tex]
[tex]S_{21}=\frac{21}{2}(-10+2(20))[/tex]
[tex]S_{21}=\frac{21}{2}(-10+40)[/tex]
[tex]S_{21}=\frac{21}{2}(30)[/tex]
[tex]S_{21}=(21)(15)[/tex]
[tex]S_{21}=315[/tex]
Answer:
The sum of the first 21 terms of this arithmetic series is 315.
Step-by-step explanation:
The given arithmetic series is
-5+(-3)+(-1)+1+...
Here first term is -5 and the common difference is
[tex]d=-3-(-5)=2[/tex]
The sum of n terms of an AP is
[tex]S_n=\frac{n}{2}[2a+(n-1)d][/tex]
We need to find the sum of the first 21 terms of this arithmetic series.
Substitute n=21, a=-5 and d=2 in the above formula, to find the sum of the first 21 terms of this arithmetic series.
[tex]S_{21}=\frac{21}{2}[2(-5)+(21-1)(2)][/tex]
[tex]S_{21}=\frac{21}{2}[-10+40][/tex]
[tex]S_{21}=\frac{21}{2}(30)[/tex]
[tex]S_{21}=315[/tex]
Therefore the sum of the first 21 terms of this arithmetic series is 315.