With position function
[tex]s(t)=t^3-12t^2+45t+4[/tex]
the velocity of the particle is given by
[tex]\dfrac{\mathrm ds}{\mathrm dt}=3t^2-24t+45[/tex]
The particle changes direction when its velocity changes sign. We have
[tex]\dfrac{\mathrm ds}{\mathrm dt}=0\implies t=3,t=5[/tex]
so the particle's direction is reversed at two different times.
The acceleration is given by
[tex]\dfrac{\mathrm d}{\mathrm dt}\left[\dfrac{\mathrm ds}{\mathrm dt}\right]=\dfrac{\mathrm d^2s}{\mathrm dt^2}=6t-24[/tex]
When [tex]t=3[/tex], the particle's position is [tex]s(3)=58[/tex] ft and its acceleration is [tex]s''(3)=-6[/tex] ft/s^2.
When [tex]t=5[/tex], the particle's position is [tex]s(5)=54[/tex] ft and its acceleration is [tex]s''(5)=6[/tex] ft/s^2.