Respuesta :
Answer:
(1,-5)
Step-by-step explanation:
The given system of inequalities are;
[tex]y\:<\:-3x+3[/tex]
and
[tex]y\:<\:x+2[/tex]
The point that is a solution will satisfy the two inequalities.
Checking for (1,-5)
[tex]-5\:<\:-3(1)+3[/tex] and [tex]-5\:<\:1+2[/tex]
[tex]-5\:<\:0[/tex]: True [tex]-5\:<\:3[/tex] : True
This point lies in the solution region.
Checking for (1,5)
[tex]5\:<\:-3(1)+3[/tex] and [tex]5\:<\:1+2[/tex]
[tex]5\:<\:0[/tex]: False [tex]5\:<\:3[/tex] : False
This point does not lie in the solution region.
Checking for (5,1)
[tex]1\:<\:-3(5)+3[/tex] and [tex]1\:<\:5+2[/tex]
[tex]1\:<\:-12[/tex]: False [tex]1\:<\:7[/tex] : True
This point does not lie in the solution region.
Checking for (-1,5)
[tex]5\:<\:-3(-1)+3[/tex] and [tex]5\:<\:-1+2[/tex]
[tex]5\:<\:6[/tex]: True [tex]5\:<\:1[/tex] : False
This point does not lie in the solution region.
Plug the values and check if they return a true statement or not:
Plugging [tex] (x,y) = (1,-5) [/tex] we have
[tex] -5 < -3 -15 < 1 + 2 \iff -5 < -18 < 3 [/tex] which is false
Plugging [tex] (x,y) = (1,5) [/tex] we have
[tex] 5 < -3 +15 < 1 + 2 \iff 5 < 12 < 3 [/tex] which is false
Plugging [tex] (x,y) = (5, 1) [/tex] we have
[tex] 1 < -15 + 3 < 5 + 2 \iff 1 < -12 < 7 [/tex] which is false
Plugging [tex] (x,y) = (-1, 5) [/tex] we have
[tex] 5 < 3 +15 < -1 + 2 \iff 5 < 18 < 1 [/tex] which is false
So, all of the options seem wrong.