Respuesta :
Answer with Step-by-step explanation:
Number of ways of choosing r items out of n are given by:
[tex]\dfrac{n!}{r!(n-r)!}[/tex]
Here, we have to choose any 2 toppings out of 8
i.e. r=2 and n=8
So, number of ways are:
[tex]\dfrac{8!}{2!(8-2)!}[/tex]
= [tex]\dfrac{8!}{2!6!}[/tex]
= [tex]\dfrac{8\times 7\times 6!}{2!6!}[/tex]
= [tex]\dfrac{8\times 7}{2}[/tex]
= 4×7
= 28
Hence, Number of ways to choose the toppings are:
28