Respuesta :
Answer:
Volume of snowman is 48π ft³
Step-by-step explanation:
Since volume of a sphere = [tex]\frac{4}{3}(\pi)(r)^{3}[/tex]
To find the volume of snowman we will find the volume of all spheres separately and add them.
Volume of sphere with radius 3 ft = [tex]\frac{4}{3}(\pi)(3)^{3}=\frac{4}{3}(\pi)(27)}[/tex] ft³
Volume of sphere with radius 2 ft = [tex]\frac{4}{3}(\pi )(2)^{3}=\frac{4}{3}(\pi )(8)[/tex]
Volume of sphere with radius 1 ft = [tex]\frac{4}{3}(\pi )(1)^{3}=\frac{4}{3}(\pi)(1)[/tex]
Total volume of the snowman = [tex]\frac{4}{3}(\pi)(27)+\frac{4}{3}(\pi )(8)+\frac{4}{3}(\pi )(1)[/tex]
= [tex]\frac{4}{3}(\pi )(27+8+1)=\frac{4}{3}(\pi )(36)[/tex]
= 48π ft³
Therefore, total volume of the snowman = 48π ft³