Respuesta :

ANSWER

[tex]x = \pm \sqrt{3} [/tex]

and they are actual solutions.

EXPLANATION

The given equation is:

[tex] \frac{ {x}^{2} }{2x - 6} = \frac{9}{6x - 18} [/tex]

Cross multiply

[tex] {x}^{2} (6x - 18) = 9(2x -6 )[/tex]

This implies;

[tex] {x}^{2} (6x - 18) - 9(2x - 6) = 0[/tex]

[tex]3{x}^{2} (2x - 6) - 9(2x - 6) = 0[/tex]

Factor

[tex](3 {x}^{2} - 9)(2x - 6) = 0[/tex]

[tex]3 {x}^{2} - 9 = 0 \: or \: 2x - 6= 0[/tex]

[tex]3 {x}^{2} = 9 \: or \: 2x = 6[/tex]

[tex]{x}^{2} = 3\: or \: x = 3[/tex]

[tex]{x} = \pm \sqrt{3} \: or \: x = 3[/tex]

The domain of the given equation is

[tex]x \ne3[/tex]

Therefore the actual solutions are

[tex]x = \pm \sqrt{3} [/tex]

NB: x=3 is not in the domain of the given equation. It cannot be an extraneous solution.