What is true about the solution above.
![What is true about the solution above class=](https://us-static.z-dn.net/files/d73/83e7eb8782cdd35bd04e5b7b5b2da822.png)
ANSWER
[tex]x = \pm \sqrt{3} [/tex]
and they are actual solutions.
EXPLANATION
The given equation is:
[tex] \frac{ {x}^{2} }{2x - 6} = \frac{9}{6x - 18} [/tex]
Cross multiply
[tex] {x}^{2} (6x - 18) = 9(2x -6 )[/tex]
This implies;
[tex] {x}^{2} (6x - 18) - 9(2x - 6) = 0[/tex]
[tex]3{x}^{2} (2x - 6) - 9(2x - 6) = 0[/tex]
Factor
[tex](3 {x}^{2} - 9)(2x - 6) = 0[/tex]
[tex]3 {x}^{2} - 9 = 0 \: or \: 2x - 6= 0[/tex]
[tex]3 {x}^{2} = 9 \: or \: 2x = 6[/tex]
[tex]{x}^{2} = 3\: or \: x = 3[/tex]
[tex]{x} = \pm \sqrt{3} \: or \: x = 3[/tex]
The domain of the given equation is
[tex]x \ne3[/tex]
Therefore the actual solutions are
[tex]x = \pm \sqrt{3} [/tex]
NB: x=3 is not in the domain of the given equation. It cannot be an extraneous solution.