Answer:
see explanation
Step-by-step explanation:
given that y is directly proportional to the square root of x, then the equation relating them is
y = k[tex]\sqrt{x}[/tex] ← k is the constant of proportionality
(i)
To find k use the condition that y = 20 when x = 16
k = [tex]\frac{y}{\sqrt{x} }[/tex] = [tex]\frac{20}{\sqrt{16} }[/tex] = [tex]\frac{20}{4}[/tex] = 5, hence
y = 5[tex]\sqrt{x}[/tex] ← equation of proportionality
(ii)
When x = 25, then
y = 5 × [tex]\sqrt{25}[/tex] = 5 × 5 = 25
(iii)
When y = 8, then
5[tex]\sqrt{x}[/tex] = 8 ( divide both sides by 5 )
[tex]\sqrt{x}[/tex] = [tex]\frac{8}{5}[/tex] ( square both sides )
x = [tex]\frac{64}{25}[/tex]