contestada

5.
If y is directly proportional to the square root of x and y = 20 when x = 16, find
(i) an equation connecting x and y,
(ii) the value of y when x = 25,
(iii) the value of x when y = 8.

Respuesta :

Answer:

see explanation

Step-by-step explanation:

given that y is directly proportional to the square root of x, then the equation relating them is

y = k[tex]\sqrt{x}[/tex] ← k is the constant of proportionality

(i)

To find k use the condition that y = 20 when x = 16

k = [tex]\frac{y}{\sqrt{x} }[/tex] = [tex]\frac{20}{\sqrt{16} }[/tex] = [tex]\frac{20}{4}[/tex] = 5, hence

y = 5[tex]\sqrt{x}[/tex] ← equation of proportionality

(ii)

When x = 25, then

y = 5 × [tex]\sqrt{25}[/tex] = 5 × 5 = 25

(iii)

When y = 8, then

5[tex]\sqrt{x}[/tex] = 8 ( divide both sides by 5 )

[tex]\sqrt{x}[/tex] = [tex]\frac{8}{5}[/tex] ( square both sides )

x = [tex]\frac{64}{25}[/tex]