Respuesta :
163 grams (3 sig. fig.).
Explanation
- Formula of carbon(IV) oxide (a.k.a. carbon dioxide): [tex]\text{CO}_2[/tex].
- Molar mass of [tex]\text{CO}_2[/tex]: [tex]\underbrace{12.01}_{\text{C}} + 2\times\underbrace{16.00}_{\text{O}}=44.01\;\text{g}\cdot\text{mol}^{-1}[/tex].
- Formula of ethyne: structural [tex]\text{H}-\text{C}\equiv\text{C}-\text{H}[/tex] or molecular [tex]\text{C}_2\text{H}_2[/tex].
- Molar mass of [tex]\text{C}_2\text{H}_2[/tex]: [tex]2\times\underbrace{12.01}_{\text{C}}+2 \times\underbrace{16.00}_{\text{O}} = 56.02\;\text{g}\cdot\text{mol}^{-1}[/tex].
All carbon atoms in that 104 grams of ethyne will end up in [tex]\text{CO}_2[/tex]. Number of moles of molecules in 104 grams of ethyne:
[tex]n = \dfrac{m}{M} = \dfrac{104}{56.02} = 1.85648\;\text{mol}[/tex].
There are two carbon atoms in each ethyne molecule. Number of carbon atoms in that many ethyne molecules:
[tex]n(\text{C}) = 2\;n(\text{C}_2\text{H}_2) = 3.71296\;\text{mol}[/tex].
There are one carbon atom in each [tex]\text{CO}_2[/tex] molecule. In case oxygen is in excess, all those carbon atoms from that 104 grams of ethyne will make [tex]n(\text{CO}_2) = n(\text{C}) =3.71296\;\text{mol}[/tex] of [tex]\text{CO}_2[/tex].
Mass of all those [tex]\text{CO}_2[/tex] molecules:
[tex]m = n\cdot M = 163\;\text{g}[/tex]. (3 sig. fig. as in the mass of ethyne.)