Respuesta :
y = abˣ
(a ≠ 0, b ≠ 0)
(1, 7.5)
x = 1
y = 7.5
↓
7.5 = ab
(3, 16.875)
x = 3
y = 16.875
↓
16.875 = ab³
7.5 = ab
b b
7.5/b = a
16.875 = ab³
b³ b³
16.875/b³ = a
7.5/b = 16.875/b³
7.5/b(b³) = 16.875/b³(b³)
7.5b² = 16.875
7.5 7.5
b² = 2.25
√(b²) = √(2.25)
b = 1.5
a = 7.5/b
a = 7.5/1.5
a = 5
y = 5(1.5)ˣ
(a ≠ 0, b ≠ 0)
(1, 7.5)
x = 1
y = 7.5
↓
7.5 = ab
(3, 16.875)
x = 3
y = 16.875
↓
16.875 = ab³
7.5 = ab
b b
7.5/b = a
16.875 = ab³
b³ b³
16.875/b³ = a
7.5/b = 16.875/b³
7.5/b(b³) = 16.875/b³(b³)
7.5b² = 16.875
7.5 7.5
b² = 2.25
√(b²) = √(2.25)
b = 1.5
a = 7.5/b
a = 7.5/1.5
a = 5
y = 5(1.5)ˣ
Answer:
The the required exponential function is [tex]y=5(1.5)^x[/tex].
Step-by-step explanation:
The equation for an exponential function, in the forms
[tex]y=ab^x[/tex]
It is given that passes through the coordinate points (1, 7.5) and (3, 16.875). It means the given function must be satisfied by these points.
[tex]7.5=ab^1[/tex]
[tex]7.5=ab[/tex] ....(1)
[tex]16.875=ab^3[/tex] ..... (2)
Divide equation (2) by equation (1).
[tex]\frac{16.875}{7.5}={ab^3}{ab}[/tex]
[tex]2.25=b^2[/tex]
[tex]b=1.5[/tex]
The value of b is 1.5. Substitute b=1.5 in equation (1).
[tex]7.5=a(1.5)[/tex]
Divide both sides by 1.5.
[tex]a=5[/tex]
Therefore the required exponential function is [tex]y=5(1.5)^x[/tex].