Respuesta :
lemme use a slightly different equation, just the variables differ, but is basically the same you have there.
A)
[tex]\bf \textit{Amount of Population Growth, \boxed{\textit{10th day}}} \\\\ A=Pe^{rt}\qquad \begin{cases} A=\textit{accumulated amount}\dotfill&5287\\ P=\textit{initial amount}\dotfill &P\\ r=rate\to r\%\to \frac{r}{100}\\ t=\textit{elapsed time}\dotfill &10\\ \end{cases} \\\\\\ A=5287e^{10r} \\\\[-0.35em] ~\dotfill[/tex]
[tex]\bf \textit{Amount of Population Growth, \boxed{\textit{21st day}}} \\\\ A=Pe^{rt}\qquad \begin{cases} A=\textit{accumulated amount}\dotfill&692\\ P=\textit{initial amount}\dotfill &P\\ r=rate\to r\%\to \frac{r}{100}\\ t=\textit{elapsed time}\dotfill &21\\ \end{cases} \\\\\\ 692=Pe^{21r} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \begin{cases} 5287=Pe^{10r}\\ 692=Pe^{21r} \end{cases}[/tex]
[tex]\bf \cfrac{5287}{e^{10r}}=P\qquad therefore\qquad \stackrel{\textit{doing some substitution}}{692=Pe^{21r}\implies 692=\left( \cfrac{5287}{e^{10r}} \right) e^{21r}} \\\\\\ \cfrac{692}{5287}=\cfrac{e^{21r}}{e^{10r}}\implies \cfrac{692}{5287}=e^{21r}e^{-10r}\implies \cfrac{692}{5287}=e^{11r}[/tex]
[tex]\bf ln\left( \cfrac{692}{5287}\right)=ln\left( e^{11r} \right)\implies ln\left( \cfrac{692}{5287}\right)=11r\implies \cfrac{ln\left( \frac{692}{5287}\right)}{11}=r \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill -0.18486\approx r~\hfill[/tex]
B)
[tex]\bf 5287=Pe^{10r}\implies 5287=Pe^{10(-0.18486)}\implies 5287=Pe^{-18.486} \\\\\\ \cfrac{5287}{e^{-18.486}}=P\implies 6360.53\approx P[/tex]
and we can round that up to a whole leaf of 6361, or truncate it to 6360, chances are is the latter.
C)
[tex]\bf \stackrel{\textit{only 1 leaf}}{1}=(6360.53)e^{-0.18486t}\implies \cfrac{1}{6360.53}=e^{-0.18486t}\ \\\\\\ ln\left( \cfrac{1}{6360.53} \right)=ln\left( e^{-0.18486t} \right)\implies ln\left( \cfrac{1}{6360.53} \right)=-0.18486t \\\\\\ \cfrac{ln\left( \frac{1}{6360.53} \right)}{-0.18486}=t\implies 47.38\approx t[/tex]
and we can round that up to 47 days even.