Use the limit theorem and the properties of limits to find the limit.
Picture below

We have
[tex]\dfrac{-6x^3+7x+7}{8x^3-8x+5}=\dfrac{-6+\frac7{x^2}+\frac7{x^3}}{8-\frac8{x^2}+\frac5{x^3}}[/tex]
As [tex]x\to-\infty[/tex], all of terms with powers of [tex]x[/tex] in their denominators will converge to 0, leaving you with
[tex]\displaystyle\lim_{x\to-\infty}\frac{-6x^3+7x+7}{8x^3-8x+5}=\lim_{x\to-\infty}\frac{-6}8=-\frac34[/tex]
making the answer B.
Answer:
The value of limit is [tex]\dfrac{-3}{4}[/tex]
Option B is correct.
Step-by-step explanation:
Given:
[tex]L=\lim_{x\rightarrow -\infty}\left ( \dfrac{-6x^3+7x+7}{8x^3-8x+5}\right )[/tex]
Here we have rational function whose limit is minus infinity.
Divide numerator and denominator by highest degree of polynomial (x³)
[tex]L=\lim_{x\rightarrow -\infty}\left ( \dfrac{-6+7/x^2+7/x^3}{8-8/x^2+5/x^3}\right )[/tex]
Apply limit and we get
[tex]L=\left ( \dfrac{-6+\frac{7}{\infty}+\frac{7}{-\infty}}{8-\frac{8}{\infty}+\frac{5}{-\infty}}\right )[/tex]
[tex]L=\left ( \dfrac{-6+0+0}{8-0+0}\right )[/tex]
[tex]L=\dfrac{-6}{8}\Rightarrow -\dfrac{3}{4}[/tex]
Hence, The value of limit is [tex]\dfrac{-3}{4}[/tex]