Respuesta :

Answer: (f o g)(x)=[tex]3x^{2}+5[/tex]

Step-by-step explanation:

To solve this problem you must apply the following proccedure:

(f o g)(x) indicates that you must substitute the function g(x) into the function f(x).

Therefore, you have:

(f o g)(x)=[tex]3(x^{2}+1) +2[/tex]

Now, you must simplify it, as it is shown below:

Apply the distributive property and add the like terms:

(f o g)(x)=[tex]3x^{2}+3+2[/tex]

(f o g)(x)=[tex]3x^{2}+5[/tex]

Answer:

( f o g) (x) = 3x²+5

Step-by-step explanation:

We have given two functions :

f (x) = 3x + 2

g(x) = x² + 1

We have to find   ( f o g) (x) =?

( f o g) (x) = (f(g(x))

Putting the values of functions in above formula.

( f o g) (x) =  3(x²+1)+2

( f o g) (x) =  3x²+3+2

Adding like terms,we have

( f o g) (x) = 3x²+5

( f o g) (x) = 3x²+5 is the answer.

ACCESS MORE
EDU ACCESS
Universidad de Mexico