A 72.0-kg person pushes on a small doorknob with a force of 5.00 N perpendicular to the surface of the door. T?
A 72.0-kg person pushes on a small doorknob with a force of 5.00 N perpendicular to the surface of the door. The doorknob is located 0.800 m from axis of the frictionless hinges of the door. The door begins to rotate with an angular acceleration of 2.00 rad/s2. What is the moment of inertia of the door about the hinges?

Respuesta :

AL2006

-- The torque he applies to the door is

                         (force) x (distance from the hinge)

                     =    (5 N)  x  (0.8 m)  =    4 N-m  .

-- Torque  = (moment of inertia) x (angular acceleration)

     4 N-m  =  (moment of inertia)  x  (2 /s²)

     Moment of inertia  =  (4 N-m) / (2 /s²)

                                   = (4 kg-m²/s²) /  (2 /s²)

                                   =       2 kg-m²

Note that the pusher's mass makes no difference, only the force exerted
perpendicular to the door.  It could be an elephant pushing lightly, or even
a mosquito if he could get up the required 5 N (about 18 ounces of force).

The moment of inertia of the door about the hinges is [tex]\boxed{2\,{\text{kg - }}{{\text{m}}^{\text{2}}}}[/tex] .

Further Explanation:

Since the force is applied perpendicular to the door and the door is hinged at the other end, the force will produce a torque in the door.

The torque produced in the door due to the applied force is given by:

[tex]\tau  = F\times d[/tex]

Here, [tex]F[/tex]  is the force applied and [tex]d[/tex]  is the distance of application of force from the axis of rotation.

Substitute [tex]5\,{\text{N}}[/tex]  for [tex]F[/tex]  and [tex]0.8\,{\text{m}}[/tex]  for [tex]d[/tex]   in above expression.

[tex]\begin{aligned}\tau=5\times0.8\\=4\,{\text{N}}\cdot{\text{m}}\\\end{aligned}[/tex]

The torque acting on the door produces an angular acceleration in the door. The torque is represented in terms of angular acceleration of the door as:

[tex]\tau=I\times\alpha[/tex]  

Here, [tex]I[/tex]  is the moment of inertia of the door and [tex]\alpha[/tex]  is the angular acceleration of the door.

Substitute the values of [tex]\tau[/tex]  and [tex]\alpha[/tex]  in above expression.

[tex]\begin{aligned}4\,{\text{N}}\cdot{\text{m}}&=I\times 2\,{{{\text{rad}}}\mathord{\left/{\vphantom{{{\text{rad}}}{{{\text{s}}^{\text{2}}}}}}\right.\kern-\nulldelimiterspace}{{{\text{s}}^{\text{2}}}}}\\I&=\frac{4}{2}\,\\&=2\,{\text{kg-}}{{\text{m}}^{\text{2}}}\\\end{aligned}[/tex]

Thus, the moment of inertia of the door about the hinge is [tex]\boxed{2\,{\text{kg - }}{{\text{m}}^{\text{2}}}}[/tex] .

Learn More:

1. A toy train rolls around a horizontal 1.0-m-diameter track https://brainly.com/question/9575487

2. On a highway a car is driven 80 https://brainly.com/question/504792

3. Assume that, at a certain angular speed ω2, the radius r becomes twice l. Find ω2 https://brainly.com/question/5813257

Answer Details:

Grade: High School

Subject: Physics

Chapter: Moment of Inertia

Keywords:

Moment of inertia, door, hinges, 72 kg person, small doorknob, 5.00 N, frictionless hinges, torque, angular acceleration, 2.0 rad/s^2.

Ver imagen snehapa