Respuesta :

bc a triangle has a total of 180°, add angles A+B to get 40+60=100, so angle C must be 80° since 180°-100°= 80°

then use sohcahtoa

Answer:

The correct option is C) [tex]\angle C=80\degree[/tex] ,[tex]a=13.1[/tex] and [tex]b=17.6[/tex]

Step-by-step explanation:

We need to calculate the solution for a triangle with [tex]A=40\degrees \, B=60\degrees \ and \ c = 20[/tex]

Since, interior angle sum of triangle is 180°

[tex]\angle A +\angle B +\angle C=180\degree[/tex]

[tex]40\degree + 60\degree +\angle C=180\degree[/tex]

[tex]100\degree +\angle C=180\degree[/tex]

Subtract both the sides by [tex]100\degree[/tex]

[tex]\angle C=180\degree-100\degree[/tex]

[tex]\angle C=80\degree[/tex]

Sine law:-

[tex]\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}[/tex]

by sine law

[tex]\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}[/tex]

[tex]\frac{\sin 40\degree}{a}=\frac{\sin 60\degree}{b}=\frac{\sin 80\degree}{20}[/tex]

Compare first and third fractions,

[tex]\frac{\sin 40\degree}{a}=\frac{\sin 80\degree}{20}[/tex]

cross multiply

[tex]\frac{20 \sin 40\degree}{\sin 80\degree}=a[/tex]

[tex]\frac{20\times 0.642}{0.984}=a[/tex]

[tex]a=13.1[/tex]

Compare second and third fractions,

[tex]\frac{\sin 60\degree}{b}=\frac{\sin 80\degree}{20}[/tex]

cross multiply

[tex]\frac{20 \sin 60\degree}{\sin 80\degree}=b[/tex]

[tex]\frac{20\times 0.866}{0.984}=b[/tex]

[tex]b=17.6[/tex]

Hence, the correct option is C) [tex]\angle C=80\degree[/tex] ,[tex]a=13.1[/tex] and [tex]b=17.6[/tex]

ACCESS MORE